3.1992 \(\int \sqrt{a+\frac{b}{x^3}} x^2 \, dx\)

Optimal. Leaf size=47 \[ \frac{1}{3} x^3 \sqrt{a+\frac{b}{x^3}}+\frac{b \tanh ^{-1}\left (\frac{\sqrt{a+\frac{b}{x^3}}}{\sqrt{a}}\right )}{3 \sqrt{a}} \]

[Out]

(Sqrt[a + b/x^3]*x^3)/3 + (b*ArcTanh[Sqrt[a + b/x^3]/Sqrt[a]])/(3*Sqrt[a])

________________________________________________________________________________________

Rubi [A]  time = 0.0241335, antiderivative size = 47, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.267, Rules used = {266, 47, 63, 208} \[ \frac{1}{3} x^3 \sqrt{a+\frac{b}{x^3}}+\frac{b \tanh ^{-1}\left (\frac{\sqrt{a+\frac{b}{x^3}}}{\sqrt{a}}\right )}{3 \sqrt{a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b/x^3]*x^2,x]

[Out]

(Sqrt[a + b/x^3]*x^3)/3 + (b*ArcTanh[Sqrt[a + b/x^3]/Sqrt[a]])/(3*Sqrt[a])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \sqrt{a+\frac{b}{x^3}} x^2 \, dx &=-\left (\frac{1}{3} \operatorname{Subst}\left (\int \frac{\sqrt{a+b x}}{x^2} \, dx,x,\frac{1}{x^3}\right )\right )\\ &=\frac{1}{3} \sqrt{a+\frac{b}{x^3}} x^3-\frac{1}{6} b \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\frac{1}{x^3}\right )\\ &=\frac{1}{3} \sqrt{a+\frac{b}{x^3}} x^3-\frac{1}{3} \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+\frac{b}{x^3}}\right )\\ &=\frac{1}{3} \sqrt{a+\frac{b}{x^3}} x^3+\frac{b \tanh ^{-1}\left (\frac{\sqrt{a+\frac{b}{x^3}}}{\sqrt{a}}\right )}{3 \sqrt{a}}\\ \end{align*}

Mathematica [A]  time = 0.104476, size = 68, normalized size = 1.45 \[ \frac{1}{3} x^{3/2} \sqrt{a+\frac{b}{x^3}} \left (\frac{\sqrt{b} \sinh ^{-1}\left (\frac{\sqrt{a} x^{3/2}}{\sqrt{b}}\right )}{\sqrt{a} \sqrt{\frac{a x^3}{b}+1}}+x^{3/2}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b/x^3]*x^2,x]

[Out]

(Sqrt[a + b/x^3]*x^(3/2)*(x^(3/2) + (Sqrt[b]*ArcSinh[(Sqrt[a]*x^(3/2))/Sqrt[b]])/(Sqrt[a]*Sqrt[1 + (a*x^3)/b])
))/3

________________________________________________________________________________________

Maple [C]  time = 0.022, size = 3340, normalized size = 71.1 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a+b/x^3)^(1/2),x)

[Out]

1/3*((a*x^3+b)/x^3)^(1/2)*x^2/a^2*(-6*I*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^
(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/
3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/
2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*3^(1/2)*x^2
*a^2*b+6*I*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-
b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+
I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticPi((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(
1/2),(-1+I*3^(1/2))/(I*3^(1/2)-3),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*3^(1/2)*x^
2*a^2*b+12*I*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+
(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-
1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^
(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-b*a^2)^(1/3)*3^(1/2)*x*a*b-12*I*(-(I
*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(
1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*
x+(-b*a^2)^(1/3)))^(1/2)*EllipticPi((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),(-1+I*3^(1
/2))/(I*3^(1/2)-3),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-b*a^2)^(1/3)*3^(1/2)*x*
a*b-6*I*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a
^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3
^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)
,((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-b*a^2)^(2/3)*3^(1/2)*b+6*(-(I*3^(1/2)-3)*
x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))
/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(
1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^
(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*x^2*a^2*b+6*I*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/
3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(
1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticPi((-(I*3^(1/2)-
3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),(-1+I*3^(1/2))/(I*3^(1/2)-3),((I*3^(1/2)+3)*(-1+I*3^(1/2))/
(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-b*a^2)^(2/3)*3^(1/2)*b-6*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^
2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*(
(I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticPi((-(I*3^
(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),(-1+I*3^(1/2))/(I*3^(1/2)-3),((I*3^(1/2)+3)*(-1+I*3^(
1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*x^2*a^2*b-12*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)
))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/
2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*
x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/
2))*(-b*a^2)^(1/3)*x*a*b+12*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^
2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b
*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticPi((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(
-b*a^2)^(1/3)))^(1/2),(-1+I*3^(1/2))/(I*3^(1/2)-3),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(1+I*3^(1/2))/(I*3^(1/2)-3))^
(1/2))*(-b*a^2)^(1/3)*x*a*b+I*(a*x^4+b*x)^(1/2)*(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x
+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1/2)*3^(1/2)*x*a^2+6*(-(I*3^(1/2)-3)*x*a/(-
1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x
+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))
^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),((I*3^(1/2)+3)*(-1+I*3^(1/2))
/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-b*a^2)^(2/3)*b-6*(-(I*3^(1/2)-3)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3
)))^(1/2)*((I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))/(1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*((I*3^(1
/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3))/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2)*EllipticPi((-(I*3^(1/2)-3
)*x*a/(-1+I*3^(1/2))/(-a*x+(-b*a^2)^(1/3)))^(1/2),(-1+I*3^(1/2))/(I*3^(1/2)-3),((I*3^(1/2)+3)*(-1+I*3^(1/2))/(
1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2))*(-b*a^2)^(2/3)*b-3*x*(a*x^4+b*x)^(1/2)*a^2*(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(
I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1/2))/(x*(a*x
^3+b))^(1/2)/(I*3^(1/2)-3)/(1/a^2*x*(-a*x+(-b*a^2)^(1/3))*(I*3^(1/2)*(-b*a^2)^(1/3)+2*a*x+(-b*a^2)^(1/3))*(I*3
^(1/2)*(-b*a^2)^(1/3)-2*a*x-(-b*a^2)^(1/3)))^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b/x^3)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.39686, size = 342, normalized size = 7.28 \begin{align*} \left [\frac{4 \, a x^{3} \sqrt{\frac{a x^{3} + b}{x^{3}}} + \sqrt{a} b \log \left (-8 \, a^{2} x^{6} - 8 \, a b x^{3} - b^{2} - 4 \,{\left (2 \, a x^{6} + b x^{3}\right )} \sqrt{a} \sqrt{\frac{a x^{3} + b}{x^{3}}}\right )}{12 \, a}, \frac{2 \, a x^{3} \sqrt{\frac{a x^{3} + b}{x^{3}}} - \sqrt{-a} b \arctan \left (\frac{2 \, \sqrt{-a} x^{3} \sqrt{\frac{a x^{3} + b}{x^{3}}}}{2 \, a x^{3} + b}\right )}{6 \, a}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b/x^3)^(1/2),x, algorithm="fricas")

[Out]

[1/12*(4*a*x^3*sqrt((a*x^3 + b)/x^3) + sqrt(a)*b*log(-8*a^2*x^6 - 8*a*b*x^3 - b^2 - 4*(2*a*x^6 + b*x^3)*sqrt(a
)*sqrt((a*x^3 + b)/x^3)))/a, 1/6*(2*a*x^3*sqrt((a*x^3 + b)/x^3) - sqrt(-a)*b*arctan(2*sqrt(-a)*x^3*sqrt((a*x^3
 + b)/x^3)/(2*a*x^3 + b)))/a]

________________________________________________________________________________________

Sympy [A]  time = 2.09564, size = 48, normalized size = 1.02 \begin{align*} \frac{\sqrt{b} x^{\frac{3}{2}} \sqrt{\frac{a x^{3}}{b} + 1}}{3} + \frac{b \operatorname{asinh}{\left (\frac{\sqrt{a} x^{\frac{3}{2}}}{\sqrt{b}} \right )}}{3 \sqrt{a}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b/x**3)**(1/2),x)

[Out]

sqrt(b)*x**(3/2)*sqrt(a*x**3/b + 1)/3 + b*asinh(sqrt(a)*x**(3/2)/sqrt(b))/(3*sqrt(a))

________________________________________________________________________________________

Giac [A]  time = 1.29151, size = 53, normalized size = 1.13 \begin{align*} \frac{1}{3} \, \sqrt{a x^{4} + b x} x - \frac{b \arctan \left (\frac{\sqrt{a + \frac{b}{x^{3}}}}{\sqrt{-a}}\right )}{3 \, \sqrt{-a}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b/x^3)^(1/2),x, algorithm="giac")

[Out]

1/3*sqrt(a*x^4 + b*x)*x - 1/3*b*arctan(sqrt(a + b/x^3)/sqrt(-a))/sqrt(-a)